Some results on statistical hypersurfaces of Sasakian statistical manifolds and holomorphic statistical manifolds
نویسندگان
چکیده
منابع مشابه
Statistical cosymplectic manifolds and their submanifolds
In this paper, we introduce statistical cosymplectic manifolds and investigate some properties of their tensors. We define invariant and anti-invariant submanifolds and study invariant submanifolds with normal and tangent structure vector fields. We prove that an invariant submanifold of a statistical cosymplectic manifold with tangent structure vector field is a cosymplectic and minimal...
متن کاملClassification of Totally Umbilical CR-Statistical Submanifolds in Holomorphic Statistical Manifolds with Constant Holomorphic Curvature
In 1985, Amari [1] introduced an interesting manifold, i.e., statistical manifold in the context of information geometry. The geometry of such manifolds includes the notion of dual connections, called conjugate connections in affine geometry, it is closely related to affine geometry. A statistical structure is a generalization of a Hessian one, it connects Hessian geometry. In the present paper...
متن کاملAsymmetric Topologies on Statistical Manifolds
Asymmetric information distances are used to define asymmetric norms and quasimetrics on the statistical manifold and its dual space of random variables. Quasimetric topology, generated by the KullbackLeibler (KL) divergence, is considered as the main example, and some of its topological properties are investigated.
متن کاملDiffusion Kernels on Statistical Manifolds
A family of kernels for statistical learning is introduced that exploits the geometric structure of statistical models. The kernels are based on the heat equation on the Riemannian manifold defined by the Fisher information metric associated with a statistical family, and generalize the Gaussian kernel of Euclidean space. As an important special case, kernels based on the geometry of multinomia...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Electronic Journal of Geometry
سال: 2021
ISSN: 1307-5624
DOI: 10.36890/iejg.776559